Mark scheme - Synthesis

Questi on		Answer/Indicative content	Marks	Guidance
1	a		$\begin{array}{\|c} 5 \\ (\mathrm{AOO} 2.5 \\ \times 5) \end{array}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW HBr ALLOW for the bottom left structure
	b i	Ester Amide Amine Carboxylic acid 4 groups correct $\checkmark \checkmark \checkmark$ 3 groups correct $\checkmark \checkmark$ 2 groups correct \checkmark	$\begin{array}{\|c} 3 \\ (\mathrm{AO} 1.2 \\ \times 3) \end{array}$	IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, - Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group e.g. benzene, phenyl, aryl, arene, methyl
		Methanol 1 mark $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH} \checkmark$	$\begin{array}{\|c} 4 \\ (\mathrm{AOO} 2.5 \\ \times 4) \end{array}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW + charge on H of NH_{3} group, i.e. $\mathrm{NH}_{3}{ }^{+}$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Water flow AND condenser \\
Water in at bottom and out at top \\
AND condenser \(\checkmark\) \\
Flask and technique \\
Pear-shaped/round-bottom flask AND reflux \(\checkmark\)
\end{tabular} \& \& \begin{tabular}{l}
DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottom/pear shaped flask \\
Examiner's Comments \\
Most candidates labelled some of the apparatus correctly and identified the reflux technique. A significant number showed water flowing in the wrong direction and 'distillation' was given as the name of the technique. The 'condenser' was sometimes labelled incorrectly, e.g. 'condensation tube, 'distillation tube' and 'water jacket'. Only just over half the candidates were given both marks. \\
OCR support \\
Candidates are advised to learn the names of chemical apparatus and the practical techniques involved. Diagrams of distillation and reflux apparatus are provided in our Practical Activities Support Guide: \\
https:/www.ocr.org.uk/Images/598 \\
371-practical-activities-supportguide.pdf
\end{tabular} \\
\hline \& \begin{tabular}{l}
Diagram showing knowledge of filtration under reduced pressure \\
Diagram showing Buchner flask \\
must have ONE side arm \\
AND \\
Buchner/Hirsh funnel on top of flask \(\checkmark\) \\
Labels not required
\(\qquad\) \\
Further details: \\
- Funnel sealed or stoppered to flask \\
AND \\
- Apparatus capable of filtering under reduced pressure \\
AND
\end{tabular} \& 2

(AO

2.3) \& | Labels NOT required for diagram |
| :--- |
| ALLOW diagram of a conical flask with a filtering setup above |
| AND |
| Side arm either in conical flask OR between flask and filter paper of funnel |
| IGNORE absence of seals \qquad |
| MUST imply some type of seal between filter setup and flask. |
| ALLOW small gaps |

\hline
\end{tabular}

- Label for setup from side arm to indicate reduced pressure

AND

- Label for Buchner flask OR Buchner/Hirsh funnel $\sqrt{ }$

ALLOW slips in spelling of 'Buchner'

Examples of suitable labels (may have arrow from side arm or tube attached)

- to pump
- to vacuum
- air out
- suction
- reduced pressure
- etc.

For Buchner flask and Buchner funnel
DO NOT ALLOW just 'flask OR 'funnel'
Flask and funnel used in normal filtration

Examiner's Comments

Many diagrams were incomplete and it was comparatively rare for both of the two available marks to be given. Important labels were often missing. Some candidates drew diagrams of other techniques, such as distillation.

Many responses were not credited with marks and this question was often omitted. Candidates need practice in recognising practical techniques and in drawing acceptable diagrams.

DO NOT ALLOW more than one *

ALLOW a circle for *

Examiner's Comments

Most candidates showed one asterisk at the base of the cyclic part of the structure. The most common error was to show two asterisks, the second being on ${ }^{*} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$, despite this carbon not being connected to four different groups.

	Requirement for E / Z isomerism $\mathrm{C}=\mathrm{C} /$ double bond \checkmark Each C (in $\mathrm{C}=\mathrm{C}$) is attached to (two) different groups/atoms \checkmark Identification as E - or \mathbf{Z} - isomer E / Z isomerism linked to (high) priority groups \checkmark Z- isomer AND groups are on same side OR the ring carbons \checkmark Reason why other E / Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of $\mathrm{C}=\mathrm{C}$ bond \checkmark	4 $\begin{gathered} \mathrm{AO} 1.2 \\ \mathrm{x} 2 \end{gathered}$ AO2.5 x2	IGNORE no H attached to $\mathrm{C}=\mathrm{C}$ IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number ORA Award BOTH identification marks for: Z- isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' E isomer is impossible' IGNORE $\mathrm{C}=\mathrm{C}$ bond cannot rotate IGNORE Groups can't swap sides Examiner's Comments Candidates displayed a good knowledge of the requirements for E / Z isomerism in terms of a $C=C$ double bond and different groups on the carbon atoms of the $\mathrm{C}=\mathrm{C}$ bond. Many assigned terpineol as the Z isomer explained in terms of the priority groups being on the same side of the $\mathrm{C}=\mathrm{C}$ bond. Candidates found it difficult to explain why terpineol has only one E / Z isomer. Many candidates thought that the $\mathrm{C}=\mathrm{C}$ bond could not rotate because it was part of the ring. however, a $\mathrm{C}=\mathrm{C}$ bond cannot rotate whether it is in a ring or not. Few candidates considered the strain put on the ring if the priority groups (being part of the ring) were to be placed in an E conformation.

(

(2)
(2)

(2)
(

				acid-base equilibria with a multistep process. Many candidates completed an equation to generate acid-base pairs, which were then usually assigned correctly. The final equation was challenging but the highest ability candidates were able to combine together all the information with their earlier responses to arrive at the correct equation. See Exemplar 15. Exemplar 15 \qquad $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{S}_{\mathrm{C}} \mathrm{CH}_{3} \mathrm{CO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}-\stackrel{H}{\mathrm{H}}-\mathrm{OH}^{\mathrm{O}}-{ }_{c}^{\mathrm{H}}-\mathrm{c}$
			1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous For connectivity, $\begin{array}{lcccc}\text { ALL } & \mathrm{I} & \mathrm{I} & \mathrm{CH}_{3-} & \mathrm{C}_{3} \mathrm{H}_{-} \\ \text {OW } & \mathrm{OH} & \mathrm{CH}_{3} & & \end{array}$ (Connectivity not being assessed) Examiner's Comments This part was one of the most challenging on the paper. Candidates needed to link the earlier information for combining two ethanal molecules to derive the product for combining two propanone molecules. Despite the challenge, the highest ability candidates were able to come up with the correct structure.
		Total	6	
6	i	Phenol $\sqrt{ }$ Amide \checkmark	2	IF > 2 functional groups are shown,

- IGNORE attempt to classify amide, e.g. secondary
- Mark 2 groups ONLY
- Mark incorrect groups first

Treat carbonyl with aldehyde OR with ketone as one functional group,
i.e.

- carbonyl, aldehyde
- carbonyl, ketone
- carbonyl

IGNORE aryl OR alkyl group
e.g. benzene, phenyl, aryl, arene, methyl

IGNORE hydroxyl/hydroxy

Examiner's Comments

This part assessed knowledge of functional groups and proved to be a very good discriminator. Able candidates usually identified the phenol and amide functional groups, with 'secondary amide' also seen.

In Exemplar 9, the candidate has identified the correct functional groups. The candidate's working by circling the functional groups in the structure shows good examination technique, helping the candidate to arrive at the correct conclusion.

The phenol group was often incorrectly identified as an alcohol and the amide group as a combination of 'amine', 'ketone', 'keytone' or 'carbonyl'. Neutral responses such as 'hydroxyl' and 'benzene' were ignored.

Candidates need to be careful that they do not present an extensive list of many functional groups in the hope that the correct groups are amongst them, as shown in Exemplar 10. Incorrect groups are marked first.

Exemplar 9

			were showing the correct steps but in the wrong order and use of a drying agent such as CaCl_{2} (confusion with part of the purification of an organic liquid). These candidates seemed unaware that adding a solid drying agent to an organic solid would result in impure paracetamol rather than purifying. Exemplar 11 shows an excellent response that addresses all aspects of the problem. In comparison, Exemplar 12 is much less detailed: concentrated HCl has not been shown as a reagent for step 1, the candidate has not shown that they know how to carry out a percentage yield calculation, and the purification is confused, and lacks detail. Exemplar 11 Exemplar 12

				H but only some identified SOC_{2} as the correct reagent. Common incorrect reagents included HCl and AlC_{3}. Most candidates recognised that polymer I was a polyester but only some were able to draw two repeat units correctly. Candidates are advised to practice drawing different polymers, taking care to ensure the correct number of repeat units are present when a specific number is required.
		Total	4	
8	i	Reflux	1	
	ii	Nucleophilic substitution (1) Mechanism Curly arrow from lone pair on OH^{-}to $\delta+$ carbon atom (1) Curly arrow and dipole on C-I bond (1) Correct products (1)	4	The curly arrow must start from the oxygen atom of the OH^{-}and must start from either the lone pair or the negative charge do not allow attack by NaOH
		Total	5	
9	i	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{H}\right]}$ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: This part was very well answered. Candidates responded with either near molecular formulae, such as $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$, structural formulae or with skeletal formulae. Some candidates made careless errors such as omitting the negative charge or showing $\left[\mathrm{H}^{+}\right]^{2}$ as numerator rather than $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}^{-}\right.$] $\left[\mathrm{H}^{+}\right]$.

	ii	Structure of thioester \checkmark Complete equation \checkmark	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as nonambiguous ALLOW C $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$ ALLOW $\mathrm{CH}_{3} \mathrm{COOH}$ Thioester functional group must be fully displayed, OR as a skeletal formula but allow $\mathrm{SC}_{4} \mathrm{H}_{9}$ in thioester Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of esterification to thiols and thioesters. Over half the candidates obtained a correct structure of the thioester. Most of these candidates constructed a balanced equation although some omitted the water product. Common errors included formation of a conventional ester and $\mathrm{H}_{2} \mathrm{~S}$, and retaining the O atom from the OH in the carboxyl group to form -COOS-. As with 4(b)(i), structural and skeletal formulae were used. Candidates are less likely to omit H atoms if the skeletal formula is used.
	ii		1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure Examiner's Comment: Just over half the candidates drew the correct structure, displaying a good understanding of interpreting organic nomenclature when drawing a structure. Common errors included omission of the CH_{2} adjacent to the terminal -SH group and placing the branch or double bond in wrong positions. Some candidates spoilt an otherwise good response by showing a structural formula or a

				mixture of skeletal and structural formulae.
	i	Products AND balanced equation \checkmark	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as nonambiguous Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of condensation to an entirely new context. One mark was allocated for the reactants and this was usually scored. The second mark for the novel cyclic compound and water was much more difficult, aimed at stretch and challenge. A significant number of candidates interpreted the information to obtain a correct cyclic structure but this mark was the domain of the most able candidates.
		Total	6	
0	i	curly arrow from ${ }^{-} \mathrm{CN}$ to carbon atom of $\mathrm{C}-\mathrm{C} /$ bond \checkmark Dipole shown on $\mathrm{C}-\mathrm{C} /$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{C} /{ }^{\delta-}$, AND curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom \checkmark correct organic product AND CH $-\checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on $\mathrm{C}^{-1}{ }^{-} \mathrm{CN}$ OR CNOR from minus sign on C of ${ }^{-\mathrm{CN}}$ ion (then lone pair on CN^{-}does not need to be shown) IGNORE NaCl ALLOW SN1 mechanism: Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\text {T }}$ and Cl°-, AND curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to Cl atom \checkmark Correct carbocation AND curly arrow from -CN to carbocation. Curly arrow must come from lone pair on C of -CN OR CN- OR from minus sign on C of -CN ion (then lone pair on CN^{-}does

			not need to be shown) \checkmark Examiner Comments The mechanism for the reaction of 1-chloropropane was well done with the majority of candidates scoring two or three of the marks. Marks were not awarded when candidates used a negative charge or a lone pair sited on the nitrogen as the starting point for a curly arrow in the first stage of the reaction mechanism. The final marking point was awarded for the production of a Cl^{\prime} ion. The placing of curly arrows, dipoles and lone pairs of electrons are important when communicating by mechanisms.
	 Reagents Reaction 2: H_{2} AND $\mathrm{Ni} \checkmark$ Reaction 3: Correct formula of an aqueous acid e.g. $\mathrm{HC} /(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \downarrow$	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE name(s) ALLOW ALLOW any suitable metal catalyst e.g. Pt ALLOW LiAlH_{4} for reagent in reaction 2 DO NOT ALLOW NaBH_{4} for reagent in reaction 2 IGNORE names (question asks for formulae) IGNORE references to temperature and/or pressure ALLOW $\mathrm{H}^{+}(\mathrm{aq})$ IGNORE dilute ALLOW formula of an acid AND water e.g. HCl AND $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{2} \mathrm{SO}_{4} \text { AND } \mathrm{H}_{2} \mathrm{O}$

				stating that amines accept protons or that a salt is produced when an acid reacts with a base were not credited. Where a full displayed structure is given the positive charge must be shown on the nitrogen atom, although $-\mathrm{NH}_{3}{ }^{+}$is acceptable. As the question required the formula of the salt, the $\mathrm{C} /-$ had to be included.
		 Ester link \checkmark Rest of structure $\sqrt{ }$ (polymer \mathbf{J} is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed $\sqrt{ }$	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n Broken down by water is not sufficient IGNORE references to photodegradable Examiner Comments The most common mark for this question was two out of the three marks available, with candidates giving a correct structure of the polymer but failing to express that the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.
		Total	11	
1 1	a	Generation of electrophile $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+} \checkmark$ Electrophilic substitution Curly arrow from p-bond to $\mathrm{NO}_{2}{ }^{+}$?	5	ANNOTATE ANSWER WITH TICKS AND CROSSES $\begin{aligned} & \text { ALLOW } \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} ? \mathrm{H}_{3} \mathrm{O}^{+}+ \\ & 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+} \end{aligned}$ $\begin{gathered} \mathrm{ALLOW}_{+}^{\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} ? \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}} \\ \text {Then } \\ \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} ? \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+} \end{gathered}$

terminology throughout.

Level 2 (3-4 marks)

Attempts all three scientific points but explanations may be incomplete.

OR

Explains two scientific points thoroughly with very few omissions.
The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately.

Level 1 (1-2 marks)

A simple explanation based on at least two of the main scientific points.
OR
Explains one scientific point thoroughly with few omissions.
There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order.

- Purification step is unclear with few scientific terms and little detail, e.g. just 'recrystallise'.
- Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products.
- Purity check specifies a method but this is unclear with little detail, e.g. take melting point.

0 marks

No response or no response worthy of credit.

- Wash with cold
water/solvent and dry

2. Percentage yield

- n (benzoic acid) used $=\frac{4.97}{122}=0.040$
- n (3-nitrobenzoic acid) made $=\frac{4.85}{167}=0.0$

- percentage yield $=\frac{0.0290}{0.0407} \times 100=71.3$ (

ALLOW 71 to calculator value of 71.29001554 correctly rounded.

CHECK for extent of errors by ECF

Alternative correct calculation may calculate theoretical mass of 3nitrobenzoic acid that can be produced as $0.0407 \times 167=6.80$
(g) followed by: percentage yield $=\frac{4.85}{6.80} \times 100=71.3$

Calculation must attempt to calculate n (benzoic acid) in mol.
3. Checking purity

- Obtain melting point
- Compare to known values
- Pure sample will have a (sharp) melting point very close to data book value

ALLOW alternative approach based on spectroscopy or TLC

Spectroscopy

- Run an NMR/IR spectrum
- Compare to (spectral) database
- Spectrum of pure sample will contain same peaks and not others

TLC

- Run a TLC
- Compare (R_{f} value) to known data

	b	Use as an organic feedstock \checkmark OR Combustion for energy production \checkmark	1	ALLOW the production of plastics or monomers or new polymers Combustion alone is not sufficient
		Total	7	
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	i	 and Acid (catalyst) \checkmark	1	Note: both the structure and condition are required for the mark ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	ii	Diagram Diagram showing correct apparatus for distillation \checkmark i.e. - Round-bottom/pear-shaped flask - Condenser (correctly orientated) - Stopper/thermometer - Delivery tube and suitable collection vessel Labels (Round-bottom/pear-shaped) flask AND condenser AND heat (source) \checkmark	2	DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottomed/pear shaped flask DO NOT ALLOW diagram mark if top of distillation head not closed Note: suitable collection vessels include: conical flask, boiling tube, test-tube, beaker etc.
		Total	3	

				ammonia/ NH_{3} IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions Examiner's Comments A well answered question. Some candidates forgot to use a solvent or suggested the use of aqueous ammonia.
	ii	(compound D)	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments This question discriminated well. Although there were very few blank pages, many incorrect structures were seen.
c	i	Alcohol AND Amide/peptide \checkmark	1	IGNORE phenol IGNORE hydroxyl/hydroxy IGNORE attempts to classify alcohol or amide as primary, secondary or tertiary DO NOT ALLOW hydroxide Examiner's Comments Generally well answered but incorrect functional groups included carbonyl and amine.
	ii		2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + on N or H i.e. ${ }^{+} \mathrm{NH}_{3}$ or $\mathrm{NH}_{3}{ }^{+}$ALLOW NH3 ${ }^{+} \mathrm{Cl}^{-}$ Examiner's Comments

				Many candidates were able to score one mark for this question but the amine group was often not protonated and it was surprisingly common to see the amine group as $\mathrm{NH}_{2}{ }^{+}$.
		Total	10	
	i	- pent-2-ene - hexa-2,4-diene	3	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{CHO}$ Examiner's Comments Many candidates responded well when asked to apply information in a unfamiliar situation. The question discriminated well but a high proportion scored all three marks. Some candidates lost marks in the second part by providing a list of three or more different structures, some of them being incorrect.
	ii		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Examiner's Comments This was a challenging question. Only more able candidates predicted the correct cyclic structure.
		Total	4	
	i	Step 1 Add HNO_{3} Step 2 Tin AND concentrated HCI \checkmark	4	ALLOW reagent mark if HNO_{3} in equation IGNORE $\mathrm{H}_{2} \mathrm{SO}_{4}$ (NOTE: $\mathrm{H}_{2} \mathrm{SO}_{4}$ not required with phenols) IGNORE concentrations of acids / temperature ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous

		Equations MUST be completely correct for one mark each DO NOT ALLOW 3H2 Examiner's Comments This question discriminated well. Most candidates knew that nitric acid was involved in the first reaction but some also included sulfuric acid and tried to construct a mechanism involving the nitronium ion, rather than write the expected equation for the reaction. The omission of water as a product was an occasional error. Many correct equations were seen for Step 2, but tin and concentrated hydrochloric acid was required to score the reagent mark.
	Nitrogen electron pair OR nitrogen lone pair accepts a proton / H^{+}V	DO NOT ALLOW nitrogen / N lone pair accepts hydrogen (proton/ $/ \mathrm{H}^{+}$ required) ALLOW nitrogen donates an electron pair / lone pair to H^{+} IGNORE NH_{2} group donates electron pair Examiner's Comments Candidates needed to mention the electron pair on the nitrogen atom to score this mark.
	compound A \checkmark compound B	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-\mathrm{N}_{2} \mathrm{Cl} \mathrm{OR}-\mathrm{N}_{2}{ }^{+} \mathrm{C}+$ DO NOT ALLOW - $\mathrm{N}=\mathrm{N}^{+}$OR $\mathrm{N} \equiv \mathrm{N}^{+} \mathrm{Cl}$. DO NOT ALLOW - N_{2}-Cl (covalent bond) Examiner's Comments

			The vast majority of candidates gave the correct structure for compound B, but common errors were the omission of the chloride ion in the formulae of the diazonium salt, or placing the positive charge on the wrong nitrogen atom.
	Total	7	
	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Correctly calculates mass of 2-hydroxybenzoic acid. AND Outlines full details of the two steps to obtain a pure sample of aspirin from the hot reaction mixture - Calculation shows all relevant steps. - Purification steps are detailed and clear, in the correct order, using appropriate scientific terms, e.g. filter under reduced pressure / using a Buchner flask; dissolve in the minimum volume of solvent. Level 2 (3-4 marks) Attempts a calculation which is mostly correct AND Some details of steps to obtain impure aspirin from the hot reaction mixture and recrystallisation - Calculation can be followed but lacks clarity. - Purification steps lack detail, e.g. filter without reduced pressure; dissolve without minimum volume of solvent. Level 1 (1-2 marks) Attempts to calculate the mass of \mathbf{B} using mole approach but makes little progress with only 1 step correct. AND Few or imprecise details about steps to obtain impure aspirin from hot reaction mixture and recrystallisation - Calculation is difficult to follow and lacks clarity - Purification steps are unclear with few scientific terms and little detail, e.g. just 'filter and crystallise'. 0 marks: No response or no response worthy of credit.	6	Indicative scientific points, with bulleted elements, may include: 1. Mass of 2-hydroxybenzoic acid - n (2-hydroxybenzoic acid) needed $=0.0450 \times \frac{100}{90}=0.0500(\text { mol) })$ - Mass $=0.0500 \times 138=$ $6.9(0) \mathrm{g}$ 2. Purification Impure aspirin from hot reaction mixture - Cool reaction mixture - Filter product under reduced pressure Recrystallisation of impure aspirin: - Dissolve impure solid in minimum volume of hot water / solvent - Cool solution and filter solid - Wash with cold water / solvent and dry NOTE Filtration of hot solution to remove solid particles is not required.
	Total	6	

1	a	Product from NH_{3} ethanol	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
				ALLOW
				ALLOW ECF from 2-bromo compound as product from Reaction 1
				\qquad
		Product from Reaction 1		DO NOT ALLOW 2-bromo compound (inconsistent with final product shown)
		\qquad		
		Product from $\mathrm{NaOH}(\mathrm{aq})$		DO NOT ALLOW ECF from 2bromo compound as product from Reaction 1 (inconsistent with final product shown)
	b			ANNOTATE ANSWER WITH TICKS AND CROSSES
		Curly arrow from $\mathrm{C}=\mathrm{C}$ bond to H of $\mathrm{H}-\mathrm{Br}$		
				ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Correct dipole shown on $\mathrm{H}-\mathrm{Br}$ AND curly arrow showing the breaking of $\mathrm{H}-\mathrm{Br}$ bond		

6.2.5 Organic Synthesis

